[读读欧拉] 一个有理式的对称公式

整式有很多对称的性质, 同样有理式也有. 首先我们从一些简单的例子来感受一下一组有趣的对称:假设 a,b,c 是互不相等的实数,容易知道我们有如下等式$$\frac{1}{a-b}+\frac{1}{b-a}=0$$$$\frac{1}{(a-b)(a-c)}+\frac{1}{(b-a)(b-c)}+\frac{1}{(c-a)(c-b)}=0$$

- 阅读全文 -

[读读欧拉] 用二项式公式的连分式推导正切函数的连分式表示

拉普拉斯曾说过一句话, "读读欧拉,他是所有人的老师。" 过去几百年后,我想这句话还是很有力量的。欧拉一生中有占当时数学论文量30%的成果,涉及极广的数学分支。更重要的是,欧拉的著作可读性很高,对于那些看教材不爽的都可以去读一读欧拉, eulerarchive.org总结了欧拉的一些结果, 一些他的论文还可以在 arxiv 找到。

- 阅读全文 -

洗衣机修复记

家里的滚筒洗衣机用了将近一年,前几天某一次我洗衣服的时候突然家里跳闸断电。开始我不明白为什么,当时没有增加特殊过载的电器,所以直接去把电闸打回来。回到房间开始没有意识到任何问题,过了一个小时的闹钟提示我去洗衣机处收衣服。当我过去发现洗衣机停掉了,所以想了下又重新打开洗衣机重新洗。可是洗衣机显示门是没有正常锁定的状态,并且此时门已经打不开了。刚开始试图用蛮力打开都没有成功,然后去网上搜索“西门子滚筒

- 阅读全文 -

几何平均即是零次幂平均

从小我们就学过算术平均和几何平均,似乎看起来是两种意义的平均,一个是“和”的平均,一个是“积”的平均。但是算数平均推广到幂平均以后,这两者可以统一。实际上,几何平均就是"零次幂平均"(在极限意义下),也就是说,我们有如下等式:$$\lim_{m\rightarrow 0} M_m(a) = \lim_{m\rightarrow 0} \left(\frac{a_1^m + a_2^m+\dots+

- 阅读全文 -

有限除环即是域

如果一个含幺环 R 的每一个非零元有乘法逆,则 R 称为除环(division ring),常记为 D。除环和域只相差乘法交换律,所以交换除环就是域。有时我们也称除环为 skew field,skew 正是指(二元乘法的)不对称。最经典的除环要数哈密顿发现的四元数环,有意思的是,这样的非退化的除环并没有有限的形式。也就是说,我们有如下著名的定理:

- 阅读全文 -

为什么 e^{x^2} 没有初等原函数

给定一个初等函数,我们很容易可以求得它的导数;而给定一个函数求它的原函数(即不定积分)却不是那么简单的一件事,对于一些常用函数的不定积分,我们有容易记得的几个例子以及并不好记积分表。可是并不是所有的初等函数都存在初等的原函数。

- 阅读全文 -

斜航线介绍

斜航线(Loxodrome)又叫恒向线,顾名思义,它是基于船舶航行背景的。Loxodrome最初是一个希腊词,loxos的意思是oblique,即是倾斜的,dromos是bearing,方位的意思。后来在17世纪这个词为了解释 Nune 这方面的工作时,被人拉丁化了,成为一个拉丁词语。我们也用Rhumb(或Rhumb Line)这个词代替之。实际上呢,比较抠门的人是有区别这两个名词的,他们的Rhu

- 阅读全文 -